programmer's documentation
Functions/Subroutines
clptur.f90 File Reference

Boundary conditions for smooth walls (icodcl = 5). More...

Functions/Subroutines

subroutine clptur (nscal, isvhb, icodcl, rcodcl, velipb, rijipb, visvdr, hbord, theipb)
 
subroutine clptur_scalar (iscal, isvhb, icodcl, rcodcl, byplus, bdplus, buk, hbord, theipb, tetmax, tetmin, tplumx, tplumn)
 

Detailed Description

Boundary conditions for smooth walls (icodcl = 5).

The wall functions may change the value of the diffusive flux.

The values at a boundary face $ \fib $ stored in the face center $ \centf $ of the variable $ P $ and its diffusive flux $ Q $ are written as:

\[ P_\centf = A_P^g + B_P^g P_\centi \]

and

\[ Q_\centf = A_P^f + B_P^f P_\centi \]

where $ P_\centi $ is the value of the variable $ P $ at the neighboring cell.

Warning:

Function/Subroutine Documentation

subroutine clptur ( integer  nscal,
integer  isvhb,
integer, dimension(nfabor,nvarcl)  icodcl,
double precision, dimension(nfabor,nvarcl,3)  rcodcl,
double precision, dimension(nfabor,ndim)  velipb,
double precision, dimension(nfabor,6)  rijipb,
double precision, dimension(ncelet)  visvdr,
double precision, dimension(nfabor)  hbord,
double precision, dimension(nfabor)  theipb 
)
Parameters
[in]nscaltotal number of scalars
[in]isvhbindicator to save exchange coeffient
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
[in]velipbvalue of the velocity at $ \centip $ of boundary cells
[in]rijipbvalue of $ R_{ij} $ at $ \centip $ of boundary cells
[out]visvdrviscosite dynamique ds les cellules de bord apres amortisst de v driest
[out]hbordcoefficients d'echange aux bords
[in]theipbboundary temperature in $ \centip $ (more exaclty the energetic variable)
subroutine clptur_scalar ( integer  iscal,
integer  isvhb,
integer, dimension(nfabor,nvarcl)  icodcl,
double precision, dimension(nfabor,nvarcl,3)  rcodcl,
double precision, dimension(nfabor)  byplus,
double precision, dimension(nfabor)  bdplus,
double precision, dimension(nfabor)  buk,
double precision, dimension(nfabor)  hbord,
double precision, dimension(nfabor)  theipb,
double precision  tetmax,
double precision  tetmin,
double precision  tplumx,
double precision  tplumn 
)
Parameters
[in]iscalscalar id
[in]isvhbindicator to save exchange coeffient
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
[in]byplusdimensionless distance to the wall
[in]bdplusdimensionless shift to the wall for scalable wall functions
[in]bukdimensionless velocity
[in,out]hbordexchange coefficient at boundary
[in]theipbboundary temperature in $ \centip $ (more exaclty the energetic variable)
[out]tetmaxmaximum local ustar value
[out]tetminminimum local ustar value
[out]tplumxmaximum local tplus value
[out]tplumnminimum local tplus value