programmer's documentation
Variables
Time scheme, turbulent disperion and Poisson's equation

Variables

integer, save nor
 number of lagrangian under step (1 or 2) More...
 
integer, save nordre
 order of integration for the stochastic differential equations More...
 
integer, save modcpl
 activates (>0) or not (=0) the complete turbulent dispersion model. When modcpl is strictly positive, its value is interpreted as the absolute Lagrangian time step number (including restarts) after which the complete model is applied. Since the complete model uses volume statistics, modcpl must either be 0 or be larger than idstnt. Useful if istala = 1 More...
 
integer, save idirla
 direction (1=x, 2=y, 3=z) of the complete model. it corresponds to the main directions of the flow. Useful if modcpl > 0 More...
 
integer, save idistu
 activation (=1) or not (=0) of the particle turbulent dispersion. The turbulent dispersion is compatible only with the RANS turbulent models ( $k-\varepsilon$, $R_{ij}-\varepsilon$, v2f or $k-\omega$). (iturb=20, 21, 30, 31, 50 or 60). More...
 
integer, save idiffl
 idiffl=1 suppresses the crossing trajectory effect, making turbulent dispersion for the particles identical to the turbulent diffusion of fluid particles. Useful if idistu=1 More...
 
integer, save ilapoi
 activation (=1) or not (=0) of the solution of a Poisson's equation for the correction of the particle instantaneous velocities (in order to obtain a null divergence). this option is not validated and reserved to the development team. Do not change the default value More...
 
integer, save iadded_mass
 activation (=1) or not (=0) of the added-mass term.

\[ \DP{u_p} = - \dfrac{1}{\rho_p} \grad P + \dfrac{u_s-u_p}{\tau_p} + g +1/2 C_A \dfrac{\rho_f}{\rho_p} \left( \dfrac{Du}{Dt}-\DP{u_p} \right) \]

and

\[ \rho_f \dfrac{Du}{Dt} \simeq - \grad P + \rho_f g \]

with $ C_A = 1$. Then

\[ \DP{u_p} = - \dfrac{1}{\rho_p} \dfrac{1+C_A/2} {1+C_A/2\dfrac{\rho_f}{\rho_p}} \grad P + \dfrac{u_s-u_p}{\widetilde{\tau}_p} + g \]

with

\[ \widetilde{\tau_p} = (1 + C_A /2 \dfrac{\rho_f}{\rho_p}) \tau_p \]

More...
 
double precision, save added_mass_const
 Added-mass constant ( $ C_A = 1$) More...
 

Detailed Description

Variable Documentation

double precision, save added_mass_const

Added-mass constant ( $ C_A = 1$)

integer, save iadded_mass

activation (=1) or not (=0) of the added-mass term.

\[ \DP{u_p} = - \dfrac{1}{\rho_p} \grad P + \dfrac{u_s-u_p}{\tau_p} + g +1/2 C_A \dfrac{\rho_f}{\rho_p} \left( \dfrac{Du}{Dt}-\DP{u_p} \right) \]

and

\[ \rho_f \dfrac{Du}{Dt} \simeq - \grad P + \rho_f g \]

with $ C_A = 1$. Then

\[ \DP{u_p} = - \dfrac{1}{\rho_p} \dfrac{1+C_A/2} {1+C_A/2\dfrac{\rho_f}{\rho_p}} \grad P + \dfrac{u_s-u_p}{\widetilde{\tau}_p} + g \]

with

\[ \widetilde{\tau_p} = (1 + C_A /2 \dfrac{\rho_f}{\rho_p}) \tau_p \]

integer, save idiffl

idiffl=1 suppresses the crossing trajectory effect, making turbulent dispersion for the particles identical to the turbulent diffusion of fluid particles. Useful if idistu=1

integer, save idirla

direction (1=x, 2=y, 3=z) of the complete model. it corresponds to the main directions of the flow. Useful if modcpl > 0

integer, save idistu

activation (=1) or not (=0) of the particle turbulent dispersion. The turbulent dispersion is compatible only with the RANS turbulent models ( $k-\varepsilon$, $R_{ij}-\varepsilon$, v2f or $k-\omega$). (iturb=20, 21, 30, 31, 50 or 60).

integer, save ilapoi

activation (=1) or not (=0) of the solution of a Poisson's equation for the correction of the particle instantaneous velocities (in order to obtain a null divergence). this option is not validated and reserved to the development team. Do not change the default value

integer, save modcpl

activates (>0) or not (=0) the complete turbulent dispersion model. When modcpl is strictly positive, its value is interpreted as the absolute Lagrangian time step number (including restarts) after which the complete model is applied. Since the complete model uses volume statistics, modcpl must either be 0 or be larger than idstnt. Useful if istala = 1

integer, save nor

number of lagrangian under step (1 or 2)

integer, save nordre

order of integration for the stochastic differential equations

  • = 1 integration using a first-order scheme
  • = 2 integration using a second-order scheme