programmer's documentation
Functions
cs_convection_diffusion.c File Reference
#include "cs_defs.h"
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "bft_error.h"
#include "bft_mem.h"
#include "bft_printf.h"
#include "cs_blas.h"
#include "cs_halo.h"
#include "cs_halo_perio.h"
#include "cs_log.h"
#include "cs_math.h"
#include "cs_mesh.h"
#include "cs_field.h"
#include "cs_field_pointer.h"
#include "cs_gradient.h"
#include "cs_gradient_perio.h"
#include "cs_ext_neighborhood.h"
#include "cs_mesh_quantities.h"
#include "cs_parall.h"
#include "cs_parameters.h"
#include "cs_prototypes.h"
#include "cs_timer.h"
#include "cs_stokes_model.h"
#include "cs_convection_diffusion.h"
Include dependency graph for cs_convection_diffusion.c:

Functions

void bilsc2 (const cs_int_t *const idtvar, const cs_int_t *const f_id, const cs_var_cal_opt_t *const var_cal_opt, const cs_int_t *const icvflb, const cs_int_t *const inc, const cs_int_t *const iccocg, const cs_int_t *const ifaccp, cs_real_t pvar[], const cs_real_t pvara[], const cs_int_t bc_type[], const cs_int_t icvfli[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t rhs[])
 
void bilsc4 (const cs_int_t *const idtvar, const cs_int_t *const f_id, const cs_var_cal_opt_t *const var_cal_opt, const cs_int_t *const icvflb, const cs_int_t *const inc, const cs_int_t *const ifaccp, const cs_int_t *const ivisep, cs_real_3_t pvar[], const cs_real_3_t pvara[], const cs_int_t bc_type[], const cs_int_t icvfli[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t secvif[], cs_real_3_t rhs[])
 
void bilsc6 (const cs_int_t *const idtvar, const cs_int_t *const f_id, const cs_var_cal_opt_t *const var_cal_opt, const cs_int_t *const icvflb, const cs_int_t *const inc, const cs_int_t *const ifaccp, cs_real_6_t pvar[], const cs_real_6_t pvara[], const cs_int_t bc_type[], const cs_int_t icvfli[], const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t rhs[])
 
void bilsct (const cs_int_t *const idtvar, const cs_int_t *const f_id, const cs_var_cal_opt_t *const var_cal_opt, const cs_int_t *const inc, const cs_int_t *const iccocg, const cs_int_t *const ifaccp, cs_real_t pvar[], const cs_real_t pvara[], const cs_int_t bc_type[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t xcpp[], cs_real_t rhs[])
 
void diften (const cs_int_t *const idtvar, const cs_int_t *const f_id, const cs_var_cal_opt_t *const var_cal_opt, const cs_int_t *const inc, const cs_int_t *const iccocg, cs_real_t pvar[], const cs_real_t pvara[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t rhs[])
 
void diftnv (const cs_int_t *const idtvar, const cs_int_t *const f_id, const cs_var_cal_opt_t *const var_cal_opt, const cs_int_t *const inc, const cs_int_t *const ifaccp, const cs_int_t *const ivisep, cs_real_3_t pvar[], const cs_real_3_t pvara[], const cs_int_t bc_type[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_33_t i_visc[], const cs_real_t b_visc[], const cs_real_t secvif[], cs_real_3_t rhs[])
 
void diftnts (const cs_int_t *const idtvar, const cs_int_t *const f_id, const cs_var_cal_opt_t *const var_cal_opt, const cs_int_t *const inc, cs_real_6_t pvar[], const cs_real_6_t pvara[], const cs_int_t bc_type[], const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_6_t rhs[])
 
void itrmas (const cs_int_t *const f_id, const cs_int_t *const init, const cs_int_t *const inc, const cs_int_t *const imrgra, const cs_int_t *const iccocg, const cs_int_t *const nswrgp, const cs_int_t *const imligp, const cs_int_t *const iphydp, const cs_int_t *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t viselx[], const cs_real_t visely[], const cs_real_t viselz[], cs_real_t i_massflux[], cs_real_t b_massflux[])
 
void itrmav (const cs_int_t *const f_id, const cs_int_t *const init, const cs_int_t *const inc, const cs_int_t *const imrgra, const cs_int_t *const iccocg, const cs_int_t *const nswrgp, const cs_int_t *const imligp, const cs_int_t *const ircflp, const cs_int_t *const iphydp, const cs_int_t *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t i_massflux[], cs_real_t b_massflux[])
 
void itrgrp (const cs_int_t *const f_id, const cs_int_t *const init, const cs_int_t *const inc, const cs_int_t *const imrgra, const cs_int_t *const iccocg, const cs_int_t *const nswrgp, const cs_int_t *const imligp, const cs_int_t *const iphydp, const cs_int_t *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t viselx[], const cs_real_t visely[], const cs_real_t viselz[], cs_real_t diverg[])
 
void itrgrv (const cs_int_t *const f_id, const cs_int_t *const init, const cs_int_t *const inc, const cs_int_t *const imrgra, const cs_int_t *const iccocg, const cs_int_t *const nswrgp, const cs_int_t *const imligp, const cs_int_t *const ircflp, const cs_int_t *const iphydp, const cs_int_t *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t diverg[])
 
void cs_convection_diffusion_scalar (int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int iccocg, int ifaccp, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const cs_int_t bc_type[], const cs_int_t icvfli[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t *restrict rhs)
 Add the explicit part of the convection/diffusion terms of a standard transport equation of a scalar field $ \varia $. More...
 
void cs_convection_diffusion_vector (int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int ifaccp, int ivisep, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const cs_int_t bc_type[], const cs_int_t icvfli[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t secvif[], cs_real_3_t *restrict rhs)
 Add the explicit part of the convection/diffusion terms of a transport equation of a vector field $ \vect{\varia} $. More...
 
void cs_convection_diffusion_tensor (int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int ifaccp, cs_real_6_t *restrict pvar, const cs_real_6_t *restrict pvara, const cs_int_t bc_type[], const cs_int_t icvfli[], const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict rhs)
 Add the explicit part of the convection/diffusion terms of a transport equation of a vector field $ \vect{\varia} $. More...
 
void cs_convection_diffusion_thermal (int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, int iccocg, int ifaccp, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const cs_int_t bc_type[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t xcpp[], cs_real_t *restrict rhs)
 Add the explicit part of the convection/diffusion terms of a transport equation of a scalar field $ \varia $ such as the temperature. More...
 
void cs_anisotropic_diffusion_scalar (int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, int iccocg, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict rhs)
 Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equation of a scalar field $ \varia $. More...
 
void cs_anisotropic_diffusion_vector (int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, int ifaccp, int ivisep, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const cs_int_t bc_type[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_33_t i_visc[], const cs_real_t b_visc[], const cs_real_t secvif[], cs_real_3_t *restrict rhs)
 Add the explicit part of the diffusion terms with a symmetric tensorial diffusivity for a transport equation of a vector field $ \vect{\varia} $. More...
 
void cs_anisotropic_diffusion_tensor (int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, cs_real_6_t *restrict pvar, const cs_real_6_t *restrict pvara, const cs_int_t bc_type[], const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_6_t *restrict rhs)
 Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equation of a scalar field $ \varia $. More...
 
void cs_face_diffusion_potential (const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int iccocg, int nswrgp, int imligp, int iphydp, int iwarnp, double epsrgp, double climgp, double extrap, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t viselx[], const cs_real_t visely[], const cs_real_t viselz[], cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux)
 Update the face mass flux with the face pressure (or pressure increment, or pressure double increment) gradient. More...
 
void cs_face_anisotropic_diffusion_potential (const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int iccocg, int nswrgp, int imligp, int ircflp, int iphydp, int iwarnp, double epsrgp, double climgp, double extrap, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux)
 Add the explicit part of the pressure gradient term to the mass flux in case of anisotropic diffusion of the pressure field $ P $. More...
 
void cs_diffusion_potential (const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int iccocg, int nswrgp, int imligp, int iphydp, int iwarnp, double epsrgp, double climgp, double extrap, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t viselx[], const cs_real_t visely[], const cs_real_t viselz[], cs_real_t *restrict diverg)
 Update the cell mass flux divergence with the face pressure (or pressure increment, or pressure double increment) gradient. More...
 
void cs_anisotropic_diffusion_potential (const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int iccocg, int nswrgp, int imligp, int ircflp, int iphydp, int iwarnp, double epsrgp, double climgp, double extrap, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict diverg)
 Add the explicit part of the divergence of the mass flux due to the pressure gradient (routine analog to diften). More...
 

Function Documentation

void bilsc2 ( const cs_int_t *const  idtvar,
const cs_int_t *const  f_id,
const cs_var_cal_opt_t *const  var_cal_opt,
const cs_int_t *const  icvflb,
const cs_int_t *const  inc,
const cs_int_t *const  iccocg,
const cs_int_t *const  ifaccp,
cs_real_t  pvar[],
const cs_real_t  pvara[],
const cs_int_t  bc_type[],
const cs_int_t  icvfli[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_t  rhs[] 
)
void bilsc4 ( const cs_int_t *const  idtvar,
const cs_int_t *const  f_id,
const cs_var_cal_opt_t *const  var_cal_opt,
const cs_int_t *const  icvflb,
const cs_int_t *const  inc,
const cs_int_t *const  ifaccp,
const cs_int_t *const  ivisep,
cs_real_3_t  pvar[],
const cs_real_3_t  pvara[],
const cs_int_t  bc_type[],
const cs_int_t  icvfli[],
const cs_real_3_t  coefav[],
const cs_real_33_t  coefbv[],
const cs_real_3_t  cofafv[],
const cs_real_33_t  cofbfv[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  secvif[],
cs_real_3_t  rhs[] 
)
void bilsc6 ( const cs_int_t *const  idtvar,
const cs_int_t *const  f_id,
const cs_var_cal_opt_t *const  var_cal_opt,
const cs_int_t *const  icvflb,
const cs_int_t *const  inc,
const cs_int_t *const  ifaccp,
cs_real_6_t  pvar[],
const cs_real_6_t  pvara[],
const cs_int_t  bc_type[],
const cs_int_t  icvfli[],
const cs_real_6_t  coefa[],
const cs_real_66_t  coefb[],
const cs_real_6_t  cofaf[],
const cs_real_66_t  cofbf[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t  rhs[] 
)
void bilsct ( const cs_int_t *const  idtvar,
const cs_int_t *const  f_id,
const cs_var_cal_opt_t *const  var_cal_opt,
const cs_int_t *const  inc,
const cs_int_t *const  iccocg,
const cs_int_t *const  ifaccp,
cs_real_t  pvar[],
const cs_real_t  pvara[],
const cs_int_t  bc_type[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  xcpp[],
cs_real_t  rhs[] 
)
void cs_anisotropic_diffusion_potential ( const int  f_id,
const cs_mesh_t m,
cs_mesh_quantities_t fvq,
int  init,
int  inc,
int  imrgra,
int  iccocg,
int  nswrgp,
int  imligp,
int  ircflp,
int  iphydp,
int  iwarnp,
double  epsrgp,
double  climgp,
double  extrap,
cs_real_3_t *restrict  frcxt,
cs_real_t *restrict  pvar,
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t *restrict  viscel,
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_t *restrict  diverg 
)

Add the explicit part of the divergence of the mass flux due to the pressure gradient (routine analog to diften).

Add the explicit part of the divergence of the mass flux due to the pressure gradient (routine analog to cs_anisotropic_diffusion_scalar).

More precisely, the divergence of the mass flux side $ \sum_{\fij \in \Facei{\celli}} \dot{m}_\fij $ is updated as follows:

\[ \sum_{\fij \in \Facei{\celli}} \dot{m}_\fij = \sum_{\fij \in \Facei{\celli}} \dot{m}_\fij - \sum_{\fij \in \Facei{\celli}} \left( \tens{\mu}_\fij \gradv_\fij P \cdot \vect{S}_\ij \right) \]

Parameters
[in]f_idfield id (or -1)
[in]mpointer to mesh
[in]fvqpointer to finite volume quantities
[in]initindicator
  • 1 initialize the mass flux to 0
  • 0 otherwise
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]imrgraindicator
  • 0 iterative gradient
  • 1 least square gradient
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterativ gradients)
  • 0 otherwise
[in]nswrgpnumber of reconstruction sweeps for the gradients
[in]imligpclipping gradient method
  • < 0 no clipping
  • = 0 thank to neighbooring gradients
  • = 1 thank to the mean gradient
[in]ircflpindicator
  • 1 flux reconstruction,
  • 0 otherwise
[in]iphydpindicator
  • 1 hydrostatic pressure taken into account
  • 0 otherwise
[in]iwarnpverbosity
[in]epsrgprelative precision for the gradient reconstruction
[in]climgpclipping coeffecient for the computation of the gradient
[in]extrapcoefficient for extrapolation of the gradient
[in]frcxtbody force creating the hydrostatic pressure
[in]pvarsolved variable (pressure)
[in]coefapboundary condition array for the variable (explicit part)
[in]coefbpboundary condition array for the variable (implicit part)
[in]cofafpboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (implicit part)
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]viscelsymmetric cell tensor $ \tens{\mu}_\celli $
[in]weighfinternal face weight between cells i j in case of tensor diffusion
[in]weighbboundary face weight for cells i in case of tensor diffusion
[in,out]divergdivergence of the mass flux
void cs_anisotropic_diffusion_scalar ( int  idtvar,
int  f_id,
const cs_var_cal_opt_t  var_cal_opt,
int  inc,
int  iccocg,
cs_real_t *restrict  pvar,
const cs_real_t *restrict  pvara,
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t *restrict  viscel,
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_t *restrict  rhs 
)

Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equation of a scalar field $ \varia $.

More precisely, the right hand side $ Rhs $ is updated as follows:

\[ Rhs = Rhs - \sum_{\fij \in \Facei{\celli}} \left( - \tens{\mu}_\fij \gradv_\fij \varia \cdot \vect{S}_\ij \right) \]

Warning:

  • $ Rhs $ has already been initialized before calling cs_anisotropic_diffusion_scalar!
  • mind the sign minus
Parameters
[in]idtvarindicator of the temporal scheme
[in]f_idindex of the current variable
[in]var_cal_optvariable calculation options
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterativ gradients)
  • 0 otherwise
[in]pvarsolved variable (current time step)
[in]pvarasolved variable (previous time step)
[in]coefapboundary condition array for the variable (explicit part)
[in]coefbpboundary condition array for the variable (implicit part)
[in]cofafpboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (implicit part)
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]viscelsymmetric cell tensor $ \tens{\mu}_\celli $
[in]weighfinternal face weight between cells i j in case of tensor diffusion
[in]weighbboundary face weight for cells i in case of tensor diffusion
[in,out]rhsright hand side $ \vect{Rhs} $
void cs_anisotropic_diffusion_tensor ( int  idtvar,
int  f_id,
const cs_var_cal_opt_t  var_cal_opt,
int  inc,
cs_real_6_t *restrict  pvar,
const cs_real_6_t *restrict  pvara,
const cs_int_t  bc_type[],
const cs_real_6_t  coefa[],
const cs_real_66_t  coefb[],
const cs_real_6_t  cofaf[],
const cs_real_66_t  cofbf[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t *restrict  viscel,
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_6_t *restrict  rhs 
)

Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equation of a scalar field $ \varia $.

More precisely, the right hand side $ Rhs $ is updated as follows:

\[ Rhs = Rhs - \sum_{\fij \in \Facei{\celli}} \left( - \tens{\mu}_\fij \gradv_\fij \varia \cdot \vect{S}_\ij \right) \]

Warning:

  • $ Rhs $ has already been initialized before calling cs_anisotropic_diffusion_scalar!
  • mind the sign minus
Parameters
[in]idtvarindicator of the temporal scheme
[in]f_idindex of the current variable
[in]var_cal_optvariable calculation options
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]pvarsolved variable (current time step)
[in]pvarasolved variable (previous time step)
[in]bc_typeboundary condition type
[in]coefaboundary condition array for the variable (explicit part)
[in]coefbboundary condition array for the variable (implicit part)
[in]cofafboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfboundary condition array for the diffusion of the variable (implicit part)
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]viscelsymmetric cell tensor $ \tens{\mu}_\celli $
[in]weighfinternal face weight between cells i j in case of tensor diffusion
[in]weighbboundary face weight for cells i in case of tensor diffusion
[in,out]rhsright hand side $ \vect{Rhs} $
void cs_anisotropic_diffusion_vector ( int  idtvar,
int  f_id,
const cs_var_cal_opt_t  var_cal_opt,
int  inc,
int  ifaccp,
int  ivisep,
cs_real_3_t *restrict  pvar,
const cs_real_3_t *restrict  pvara,
const cs_int_t  bc_type[],
const cs_real_3_t  coefav[],
const cs_real_33_t  coefbv[],
const cs_real_3_t  cofafv[],
const cs_real_33_t  cofbfv[],
const cs_real_33_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  secvif[],
cs_real_3_t *restrict  rhs 
)

Add the explicit part of the diffusion terms with a symmetric tensorial diffusivity for a transport equation of a vector field $ \vect{\varia} $.

More precisely, the right hand side $ \vect{Rhs} $ is updated as follows:

\[ \vect{Rhs} = \vect{Rhs} - \sum_{\fij \in \Facei{\celli}} \left( - \tens{\mu}_\fij \gradt_\fij \vect{\varia} \cdot \vect{S}_\ij \right) \]

Warning:

  • $ \vect{Rhs} $ has already been initialized before calling diftnv!
  • mind the sign minus
Parameters
[in]idtvarindicator of the temporal scheme
[in]f_idindex of the current variable
[in]var_cal_optvariable calculation options
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]ifaccpindicator
  • 1 coupling activated
  • 0 coupling not activated
[in]ivisepindicator to take $ \divv \left(\mu \gradt \transpose{\vect{a}} \right) -2/3 \grad\left( \mu \dive \vect{a} \right)$
  • 1 take into account,
[in]pvarsolved variable (current time step)
[in]pvarasolved variable (previous time step)
[in]bc_typeboundary condition type
[in]coefavboundary condition array for the variable (explicit part)
[in]coefbvboundary condition array for the variable (implicit part)
[in]cofafvboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfvboundary condition array for the diffusion of the variable (implicit part)
[in]i_visc$ \tens{\mu}_\fij \dfrac{S_\fij}{\ipf\jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]secvifsecondary viscosity at interior faces
[in,out]rhsright hand side $ \vect{Rhs} $
void cs_convection_diffusion_scalar ( int  idtvar,
int  f_id,
const cs_var_cal_opt_t  var_cal_opt,
int  icvflb,
int  inc,
int  iccocg,
int  ifaccp,
cs_real_t *restrict  pvar,
const cs_real_t *restrict  pvara,
const cs_int_t  bc_type[],
const cs_int_t  icvfli[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_t *restrict  rhs 
)

Add the explicit part of the convection/diffusion terms of a standard transport equation of a scalar field $ \varia $.

More precisely, the right hand side $ Rhs $ is updated as follows:

\[ Rhs = Rhs - \sum_{\fij \in \Facei{\celli}} \left( \dot{m}_\ij \left( \varia_\fij - \varia_\celli \right) - \mu_\fij \gradv_\fij \varia \cdot \vect{S}_\ij \right) \]

Warning:

  • $ Rhs $ has already been initialized before calling bilsc2!
  • mind the sign minus
Parameters
[in]idtvarindicator of the temporal scheme
[in]f_idfield id (or -1)
[in]var_cal_optvariable calculation options
[in]icvflbglobal indicator of boundary convection flux
  • 0 upwind scheme at all boundary faces
  • 1 imposed flux at some boundary faces
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterative gradients)
  • 0 otherwise
[in]ifaccpindicator
  • 1 coupling activated
  • 0 coupling not activated
[in]pvarsolved variable (current time step)
[in]pvarasolved variable (previous time step)
[in]bc_typeboundary condition type
[in]icvfliboundary face indicator array of convection flux
  • 0 upwind scheme
  • 1 imposed flux
[in]coefapboundary condition array for the variable (explicit part)
[in]coefbpboundary condition array for the variable (implicit part)
[in]cofafpboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (implicit part)
[in]i_massfluxmass flux at interior faces
[in]b_massfluxmass flux at boundary faces
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in,out]rhsright hand side $ \vect{Rhs} $
void cs_convection_diffusion_tensor ( int  idtvar,
int  f_id,
const cs_var_cal_opt_t  var_cal_opt,
int  icvflb,
int  inc,
int  ifaccp,
cs_real_6_t *restrict  pvar,
const cs_real_6_t *restrict  pvara,
const cs_int_t  bc_type[],
const cs_int_t  icvfli[],
const cs_real_6_t  coefa[],
const cs_real_66_t  coefb[],
const cs_real_6_t  cofaf[],
const cs_real_66_t  cofbf[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t *restrict  rhs 
)

Add the explicit part of the convection/diffusion terms of a transport equation of a vector field $ \vect{\varia} $.

More precisely, the right hand side $ \vect{Rhs} $ is updated as follows:

\[ \vect{Rhs} = \vect{Rhs} - \sum_{\fij \in \Facei{\celli}} \left( \dot{m}_\ij \left( \vect{\varia}_\fij - \vect{\varia}_\celli \right) - \mu_\fij \gradt_\fij \vect{\varia} \cdot \vect{S}_\ij \right) \]

Warning:

  • $ \vect{Rhs} $ has already been initialized before calling bilsc!
  • mind the sign minus
Parameters
[in]idtvarindicator of the temporal scheme
[in]f_idindex of the current variable
[in]var_cal_optvariable calculation options
[in]icvflbglobal indicator of boundary convection flux
  • 0 upwind scheme at all boundary faces
  • 1 imposed flux at some boundary faces
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]ifaccpindicator
  • 1 coupling activated
  • 0 coupling not activated
[in]pvarsolved velocity (current time step)
[in]pvarasolved velocity (previous time step)
[in]bc_typeboundary condition type
[in]icvfliboundary face indicator array of convection flux
  • 0 upwind scheme
  • 1 imposed flux
[in]coefaboundary condition array for the variable (Explicit part)
[in]coefbboundary condition array for the variable (Implicit part)
[in]cofafboundary condition array for the diffusion of the variable (Explicit part)
[in]cofbfboundary condition array for the diffusion of the variable (Implicit part)
[in]i_massfluxmass flux at interior faces
[in]b_massfluxmass flux at boundary faces
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in,out]rhsright hand side $ \vect{Rhs} $
void cs_convection_diffusion_thermal ( int  idtvar,
int  f_id,
const cs_var_cal_opt_t  var_cal_opt,
int  inc,
int  iccocg,
int  ifaccp,
cs_real_t *restrict  pvar,
const cs_real_t *restrict  pvara,
const cs_int_t  bc_type[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  xcpp[],
cs_real_t *restrict  rhs 
)

Add the explicit part of the convection/diffusion terms of a transport equation of a scalar field $ \varia $ such as the temperature.

More precisely, the right hand side $ Rhs $ is updated as follows:

\[ Rhs = Rhs + \sum_{\fij \in \Facei{\celli}} \left( C_p\dot{m}_\ij \varia_\fij - \lambda_\fij \gradv_\fij \varia \cdot \vect{S}_\ij \right) \]

Warning: $ Rhs $ has already been initialized before calling bilsct!

Parameters
[in]idtvarindicator of the temporal scheme
[in]f_idindex of the current variable
[in]var_cal_optvariable calculation options
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterative gradients)
  • 0 otherwise
[in]ifaccpindicator
  • 1 coupling activated
  • 0 coupling not activated
[in]pvarsolved variable (current time step)
[in]pvarasolved variable (previous time step)
[in]bc_typeboundary condition type
[in]coefapboundary condition array for the variable (explicit part)
[in]coefbpboundary condition array for the variable (implicit part)
[in]cofafpboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (implicit part)
[in]i_massfluxmass flux at interior faces
[in]b_massfluxmass flux at boundary faces
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]xcpparray of specific heat ( $ C_p $)
[in,out]rhsright hand side $ \vect{Rhs} $
void cs_convection_diffusion_vector ( int  idtvar,
int  f_id,
const cs_var_cal_opt_t  var_cal_opt,
int  icvflb,
int  inc,
int  ifaccp,
int  ivisep,
cs_real_3_t *restrict  pvar,
const cs_real_3_t *restrict  pvara,
const cs_int_t  bc_type[],
const cs_int_t  icvfli[],
const cs_real_3_t  coefav[],
const cs_real_33_t  coefbv[],
const cs_real_3_t  cofafv[],
const cs_real_33_t  cofbfv[],
const cs_real_t  i_massflux[],
const cs_real_t  b_massflux[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  secvif[],
cs_real_3_t *restrict  rhs 
)

Add the explicit part of the convection/diffusion terms of a transport equation of a vector field $ \vect{\varia} $.

More precisely, the right hand side $ \vect{Rhs} $ is updated as follows:

\[ \vect{Rhs} = \vect{Rhs} - \sum_{\fij \in \Facei{\celli}} \left( \dot{m}_\ij \left( \vect{\varia}_\fij - \vect{\varia}_\celli \right) - \mu_\fij \gradt_\fij \vect{\varia} \cdot \vect{S}_\ij \right) \]

Remark: if ivisep = 1, then we also take $ \mu \transpose{\gradt\vect{\varia}} + \lambda \trace{\gradt\vect{\varia}} $, where $ \lambda $ is the secondary viscosity, i.e. usually $ -\frac{2}{3} \mu $.

Warning:

  • $ \vect{Rhs} $ has already been initialized before calling bilsc!
  • mind the sign minus
Parameters
[in]idtvarindicator of the temporal scheme
[in]f_idindex of the current variable
[in]var_cal_optvariable calculation options
[in]icvflbglobal indicator of boundary convection flux
  • 0 upwind scheme at all boundary faces
  • 1 imposed flux at some boundary faces
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]ifaccpindicator
  • 1 coupling activated
  • 0 coupling not activated
[in]ivisepindicator to take $ \divv \left(\mu \gradt \transpose{\vect{a}} \right) -2/3 \grad\left( \mu \dive \vect{a} \right)$
  • 1 take into account,
  • 0 otherwise
[in]pvarsolved velocity (current time step)
[in]pvarasolved velocity (previous time step)
[in]bc_typeboundary condition type
[in]icvfliboundary face indicator array of convection flux
  • 0 upwind scheme
  • 1 imposed flux
[in]coefavboundary condition array for the variable (explicit part)
[in]coefbvboundary condition array for the variable (implicit part)
[in]cofafvboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfvboundary condition array for the diffusion of the variable (implicit part)
[in]i_massfluxmass flux at interior faces
[in]b_massfluxmass flux at boundary faces
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]secvifsecondary viscosity at interior faces
[in,out]rhsright hand side $ \vect{Rhs} $
void cs_diffusion_potential ( const int  f_id,
const cs_mesh_t m,
cs_mesh_quantities_t fvq,
int  init,
int  inc,
int  imrgra,
int  iccocg,
int  nswrgp,
int  imligp,
int  iphydp,
int  iwarnp,
double  epsrgp,
double  climgp,
double  extrap,
cs_real_3_t *restrict  frcxt,
cs_real_t *restrict  pvar,
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  viselx[],
const cs_real_t  visely[],
const cs_real_t  viselz[],
cs_real_t *restrict  diverg 
)

Update the cell mass flux divergence with the face pressure (or pressure increment, or pressure double increment) gradient.

\[ \dot{m}_\ij = \dot{m}_\ij - \sum_j \Delta t \grad_\fij p \cdot \vect{S}_\ij \]

Parameters
[in]f_idfield id (or -1)
[in]mpointer to mesh
[in]fvqpointer to finite volume quantities
[in]initindicator
  • 1 initialize the mass flux to 0
  • 0 otherwise
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]imrgraindicator
  • 0 iterative gradient
  • 1 least square gradient
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterative gradients)
  • 0 otherwise
[in]nswrgpnumber of reconstruction sweeps for the gradients
[in]imligpclipping gradient method
  • < 0 no clipping
  • = 0 thank to neighbooring gradients
  • = 1 thank to the mean gradient
[in]iphydphydrostatic pressure indicator
[in]iwarnpverbosity
[in]epsrgprelative precision for the gradient reconstruction
[in]climgpclipping coeffecient for the computation of the gradient
[in]extrapcoefficient for extrapolation of the gradient
[in]frcxtbody force creating the hydrostatic pressure
[in]pvarsolved variable (current time step)
[in]coefapboundary condition array for the variable (explicit part)
[in]coefbpboundary condition array for the variable (implicit part)
[in]cofafpboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (implicit part)
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]viselxviscosity by cell, dir x
[in]viselyviscosity by cell, dir y
[in]viselzviscosity by cell, dir z
[in,out]divergmass flux divergence
void cs_face_anisotropic_diffusion_potential ( const int  f_id,
const cs_mesh_t m,
cs_mesh_quantities_t fvq,
int  init,
int  inc,
int  imrgra,
int  iccocg,
int  nswrgp,
int  imligp,
int  ircflp,
int  iphydp,
int  iwarnp,
double  epsrgp,
double  climgp,
double  extrap,
cs_real_3_t *restrict  frcxt,
cs_real_t *restrict  pvar,
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t *restrict  viscel,
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_t *restrict  i_massflux,
cs_real_t *restrict  b_massflux 
)

Add the explicit part of the pressure gradient term to the mass flux in case of anisotropic diffusion of the pressure field $ P $.

More precisely, the mass flux side $ \dot{m}_\fij $ is updated as follows:

\[ \dot{m}_\fij = \dot{m}_\fij - \left( \tens{\mu}_\fij \gradv_\fij P \cdot \vect{S}_\ij \right) \]

Parameters
[in]f_idfield id (or -1)
[in]mpointer to mesh
[in]fvqpointer to finite volume quantities
[in]initindicator
  • 1 initialize the mass flux to 0
  • 0 otherwise
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]imrgraindicator
  • 0 iterative gradient
  • 1 least square gradient
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterativ gradients)
  • 0 otherwise
[in]nswrgpnumber of reconstruction sweeps for the gradients
[in]imligpclipping gradient method
  • < 0 no clipping
  • = 0 thank to neighbooring gradients
  • = 1 thank to the mean gradient
[in]ircflpindicator
  • 1 flux reconstruction,
  • 0 otherwise
[in]iphydpindicator
  • 1 hydrostatic pressure taken into account
  • 0 otherwise
[in]iwarnpverbosity
[in]epsrgprelative precision for the gradient reconstruction
[in]climgpclipping coeffecient for the computation of the gradient
[in]extrapcoefficient for extrapolation of the gradient
[in]frcxtbody force creating the hydrostatic pressure
[in]pvarsolved variable (pressure)
[in]coefapboundary condition array for the variable (explicit part)
[in]coefbpboundary condition array for the variable (implicit part)
[in]cofafpboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (implicit part)
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]viscelsymmetric cell tensor $ \tens{\mu}_\celli $
[in]weighfinternal face weight between cells i j in case of tensor diffusion
[in]weighbboundary face weight for cells i in case of tensor diffusion
[in,out]i_massfluxmass flux at interior faces
[in,out]b_massfluxmass flux at boundary faces
void cs_face_diffusion_potential ( const int  f_id,
const cs_mesh_t m,
cs_mesh_quantities_t fvq,
int  init,
int  inc,
int  imrgra,
int  iccocg,
int  nswrgp,
int  imligp,
int  iphydp,
int  iwarnp,
double  epsrgp,
double  climgp,
double  extrap,
cs_real_3_t *restrict  frcxt,
cs_real_t *restrict  pvar,
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  viselx[],
const cs_real_t  visely[],
const cs_real_t  viselz[],
cs_real_t *restrict  i_massflux,
cs_real_t *restrict  b_massflux 
)

Update the face mass flux with the face pressure (or pressure increment, or pressure double increment) gradient.

\[ \dot{m}_\ij = \dot{m}_\ij - \Delta t \grad_\fij \delta p \cdot \vect{S}_\ij \]

Parameters
[in]f_idfield id (or -1)
[in]mpointer to mesh
[in]fvqpointer to finite volume quantities
[in]initindicator
  • 1 initialize the mass flux to 0
  • 0 otherwise
[in]incindicator
  • 0 when solving an increment
  • 1 otherwise
[in]imrgraindicator
  • 0 iterative gradient
  • 1 least square gradient
[in]iccocgindicator
  • 1 re-compute cocg matrix (for iterative gradients)
  • 0 otherwise
[in]nswrgpnumber of reconstruction sweeps for the gradients
[in]imligpclipping gradient method
  • < 0 no clipping
  • = 0 thank to neighbooring gradients
  • = 1 thank to the mean gradient
[in]iphydphydrostatic pressure indicator
[in]iwarnpverbosity
[in]epsrgprelative precision for the gradient reconstruction
[in]climgpclipping coeffecient for the computation of the gradient
[in]extrapcoefficient for extrapolation of the gradient
[in]frcxtbody force creating the hydrostatic pressure
[in]pvarsolved variable (current time step)
[in]coefapboundary condition array for the variable (explicit part)
[in]coefbpboundary condition array for the variable (implicit part)
[in]cofafpboundary condition array for the diffusion of the variable (explicit part)
[in]cofbfpboundary condition array for the diffusion of the variable (implicit part)
[in]i_visc$ \mu_\fij \dfrac{S_\fij}{\ipf \jpf} $ at interior faces for the r.h.s.
[in]b_visc$ \mu_\fib \dfrac{S_\fib}{\ipf \centf} $ at border faces for the r.h.s.
[in]viselxviscosity by cell, dir x
[in]viselyviscosity by cell, dir y
[in]viselzviscosity by cell, dir z
[in,out]i_massfluxmass flux at interior faces
[in,out]b_massfluxmass flux at boundary faces
void diften ( const cs_int_t *const  idtvar,
const cs_int_t *const  f_id,
const cs_var_cal_opt_t *const  var_cal_opt,
const cs_int_t *const  inc,
const cs_int_t *const  iccocg,
cs_real_t  pvar[],
const cs_real_t  pvara[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t  viscel[],
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_t  rhs[] 
)
void diftnts ( const cs_int_t *const  idtvar,
const cs_int_t *const  f_id,
const cs_var_cal_opt_t *const  var_cal_opt,
const cs_int_t *const  inc,
cs_real_6_t  pvar[],
const cs_real_6_t  pvara[],
const cs_int_t  bc_type[],
const cs_real_6_t  coefa[],
const cs_real_66_t  coefb[],
const cs_real_6_t  cofaf[],
const cs_real_66_t  cofbf[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t  viscel[],
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_6_t  rhs[] 
)
void diftnv ( const cs_int_t *const  idtvar,
const cs_int_t *const  f_id,
const cs_var_cal_opt_t *const  var_cal_opt,
const cs_int_t *const  inc,
const cs_int_t *const  ifaccp,
const cs_int_t *const  ivisep,
cs_real_3_t  pvar[],
const cs_real_3_t  pvara[],
const cs_int_t  bc_type[],
const cs_real_3_t  coefav[],
const cs_real_33_t  coefbv[],
const cs_real_3_t  cofafv[],
const cs_real_33_t  cofbfv[],
const cs_real_33_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  secvif[],
cs_real_3_t  rhs[] 
)
void itrgrp ( const cs_int_t *const  f_id,
const cs_int_t *const  init,
const cs_int_t *const  inc,
const cs_int_t *const  imrgra,
const cs_int_t *const  iccocg,
const cs_int_t *const  nswrgp,
const cs_int_t *const  imligp,
const cs_int_t *const  iphydp,
const cs_int_t *const  iwarnp,
const cs_real_t *const  epsrgp,
const cs_real_t *const  climgp,
const cs_real_t *const  extrap,
cs_real_3_t  frcxt[],
cs_real_t  pvar[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  viselx[],
const cs_real_t  visely[],
const cs_real_t  viselz[],
cs_real_t  diverg[] 
)
void itrgrv ( const cs_int_t *const  f_id,
const cs_int_t *const  init,
const cs_int_t *const  inc,
const cs_int_t *const  imrgra,
const cs_int_t *const  iccocg,
const cs_int_t *const  nswrgp,
const cs_int_t *const  imligp,
const cs_int_t *const  ircflp,
const cs_int_t *const  iphydp,
const cs_int_t *const  iwarnp,
const cs_real_t *const  epsrgp,
const cs_real_t *const  climgp,
const cs_real_t *const  extrap,
cs_real_3_t  frcxt[],
cs_real_t  pvar[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t  viscel[],
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_t  diverg[] 
)
void itrmas ( const cs_int_t *const  f_id,
const cs_int_t *const  init,
const cs_int_t *const  inc,
const cs_int_t *const  imrgra,
const cs_int_t *const  iccocg,
const cs_int_t *const  nswrgp,
const cs_int_t *const  imligp,
const cs_int_t *const  iphydp,
const cs_int_t *const  iwarnp,
const cs_real_t *const  epsrgp,
const cs_real_t *const  climgp,
const cs_real_t *const  extrap,
cs_real_3_t  frcxt[],
cs_real_t  pvar[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
const cs_real_t  viselx[],
const cs_real_t  visely[],
const cs_real_t  viselz[],
cs_real_t  i_massflux[],
cs_real_t  b_massflux[] 
)
void itrmav ( const cs_int_t *const  f_id,
const cs_int_t *const  init,
const cs_int_t *const  inc,
const cs_int_t *const  imrgra,
const cs_int_t *const  iccocg,
const cs_int_t *const  nswrgp,
const cs_int_t *const  imligp,
const cs_int_t *const  ircflp,
const cs_int_t *const  iphydp,
const cs_int_t *const  iwarnp,
const cs_real_t *const  epsrgp,
const cs_real_t *const  climgp,
const cs_real_t *const  extrap,
cs_real_3_t  frcxt[],
cs_real_t  pvar[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  i_visc[],
const cs_real_t  b_visc[],
cs_real_6_t  viscel[],
const cs_real_2_t  weighf[],
const cs_real_t  weighb[],
cs_real_t  i_massflux[],
cs_real_t  b_massflux[] 
)